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MODELING NATURAL LANGUAGE INFORMATION FOR USE IN THE COMBINATION OF EVIDENCE PROBLEM

I .R. Goodman

Command and Control Department, Code 421,

Naval Ocean Systems Center, San Diego, California g2152.

Abstract iature, resulting in statistical procedures for the
modeling of associated error tables and matchingThe general problem of combining information from var- tables used in the Inference rules, while others are

ous sources, linguistic and/or numerical, has been treat- more subJective i "-'- and z talcS from pooling
ed in previous work. This paper continues the effort panels of experts or from other non-analytic sources.
with e-phasi: t.e nlueiing of linguistic information. Examples of the former include geolocation and sensor
Included in the results is a new approach to the model- state attributes, while examples of the latter include
ing of conditional expressions. In addition, temporal various verbal descriptions, classifications, and in-
and modal operators are treated as well as linguistic telligence information. The output of the PACT algorithm
connectives and relations. is a posterior possibility or-membership function of

the correlation level between any two given track hist-
ories of interest. In turn, a single figure-of-merit

INTRODUCTION has been developed which represents the overall correl-
ation level between the two histories [12). Also, a

This paper continues the ongoing investigations into the scheme may be established in which the algorltlhr acts
general problem of combining information that arises as a "black box" producing a table of correlation values
from many different sources In location and type, the relative to all tracks of interest to be used in per-
latter including a wide variety of linguistic-based or forming corfelation and tracking. Two major break-
probabilistic origins. A major application of this work throughs have teen recently obtained concerning the
has been to the target tracking and data association- ecslgn and asymptotic behavior of the algorithm.It has
or "correlation'- problem in Naval Ocean Surveillance. been shown that guidelines may be established for the
(For previous studies see, e.g., [11,[2],[3].) choice of class of operators used in the algorithm and

that if relatively data matches occur, the algorithiIn brief, combination of evidence has been considered will yield asymptotically consistent correlation levels.
from a multiple-valued logical viewpoint, related to the Conversely, low data matches drive the algorithm event-
theory of fuzzy sets as originally developed and refined ually to low correlation outputs, as should be intul-

by Zadeh F41,[5] and carried further by other research- ually [2 for ot uts.)

ers[61[71J27Jpart of the work has also been motivated tively.(See [12] for both results.)

and guided by parallel results from the theory of random Since the core of the approach to combining evidence,
sets and "flou" sets [81,[9]. The major application to as outlined above, consists of inference rules and
the problem of data association has culminated in the error tables modeled within a framework of multiple-
PACT (Possibilistic Approach to Correlation and Track- valued logic, modeling of these relations is critical.
ing) algorithm [2],[3]. This is a procedure which oper- In addition, it is important that a wide scope of
ates upon raw data or suitably smoothed or predicted relations can be treated. Huwever, at present, the
data, depending upon the given scenario, which is cate- PACT algorithm can only handle the simplest type of
gorized according to attribute type. Thus for example, inference rules. The following inferencerule is far too
data may be classified into geolocation- the most com- complex in form to be incorporated in the algorithm:S*=
mon and first historically to be considered by research- "In Ocean region V, and usually in Region W, if the
ers in correlation theory (see the extensive work in- weather is poor and the sea state corresponds to rel-
volving only geolocation attributes in the Naval Ocean atively high turbulance, then indications by sensor
Surveillance Correlation Handbook [lO],[ll3)-as well as system A that a submarine was in the area are not that
other categories. The latter include classification of reliable and probably should be discounted in favor of
various sorts, visual sighting information, and many geolocation matching information obtained from sensor
kinds of sensor system state parameter data. In addition, system B, although exceptions to this can occur when
PACT operates upon predetermined functions or tables of visibility is up to about two miles, in which case it
possible errors involved in the reporting of the attri- has been shown that A-data matching should be assigned
bute information, as well as upon a collection of infer- a much higher degree of importance in its effect upon
ence rules obtained from a combination of experts and correlation." Another example is given by:S*="Contact
analytic considerations. These inference rules connect with the ship was held for about two hours , but was
degrees of possible matches of information for various lost just before the Straights of Skagerrak were sight-
combinations of attributes betwe a a typical pair of ed, although purple side-insignis may have been spotted
track histories considered for correlation and the re- as well as an oval-shaped dome near the rear of the
sulting levels of possible correlations. Thus, a typical ship, but a foggy condition pervaded the area preventing
inference rule might state in its linguistic form "If any further identification."
geolocation information matches to degree 0.8 and radar Such examples as above illustrate the typical problems
(of type A, say) parameter information matches rather faced in modeling ind symbolizino stural lanquaqe.
poorly, then the correlation level between the two This includes tie interpretation of modifiers such as
trac histories is low, but not impossible." Some of "usually", "-elatively high", "rot that reliable",
the attributes in the above proress are statistical In modal and temporal operators such as "probably should



be",'was held for about two hours",and verb/predicative atea remains a lively one for research. (See the large
relations such as "Contact with the ship", "as Inst", compendium cf approaches In [20].)
"foggy condition pervaded the area". (See [13],[14] for A typical parsing analysis yields for any giver com-
related linguistic problems arising in expert systems.) pound sentence S

A systematic approach to the full symbolization of S=comb( ..not,&,or,if()then,.)(S, S S ) l)
language is thus most desirable. In this paper, some .... r
modest efforts in this direction are made. Conditional where the operators "not",".","or", etc. all indicate
expressions, such as "most tall ships in region 5 are the usual unary or binary linguistic cornectors and
enemy ones of type F" are considered. The approach here comb indicates some sequential combination of these
is in contrast to Zadeh's rather arbitrary "fuzzy card- connectors with sentences SI,Sl2,..S r , the latter all
inality"approach which cannot be direct 1  derived from having simpler forms than S does. In turn, each S
multivalued truth considerations [5],[15]. A compre- also has a parsed form in terms of relatively simler
hensive approach is taken to the modeling of temporal sentences, etc.
and modal relations, extending earlier ideas of Zadeh's
PRUF technique [5]. Some examples are presented illus- (e) Modified Principle of Abstraction: Any sufficient-
traling these ideas with an important application to ly simple sentence,such as the components S in (1).
the combination of evidence procedure as given in PACT. has a unique corresponding semantically equivalent form
[16] contains a number of other modeling procedures in (x F A) (2)
addition to those presented in this paper.

where A represents a generalized set, property, or at-
NATURA L LANGUAGE, FORMAL LANGUAGE, AND tribute, x is a possible vector of elements in the ord-SEMANTIC EVALUATIONS inary sense, and E is the extended set membership re-

lation for generalized sets. (See [161 for further de-

Too often In the pist, natural language information was tails on these relations.) As in ordinary set relations,
neglected in favortofhmore pnature " anuger ataOn wa A is considered a subset of an ordinary set X calledneglected in favor of "more precise" numerical data. Or, the universe of discourse or base space and in the or-
such information at times was arbitrarily precisified to dinary sense,x is in X, i.e. x c X. It should be noted
be in numerical form. Since the onset of Chomsky and that this apparently reasonable principle can lead to
others, more rigorous outlooks have been taken toward paradoxes in formal logical system! , such as in clas-
the understanding and modeling of information content sical naive set theory or even in set theory based on
in language [17],[18]. With the work of Zadeh on PRUF multiple-valued logic, for a wide variet of logics
[51 began a new era in the development of a calculus (except for LukasiewLcz- fLogic- see [27] . In the work
for semantic evaluation of natural language. This here, these difficulties will be ignored for the time
section continues in the direction of Zadeh. The follow- being.
ing basic premises are assumed:

(a) All natural language information is translatable Thus, (1) and-(21 yield for sentence S

into sequences of English sentences. The problem of S=comb(..,not,&,or,..)(xl Al,x2A 2 ,...,x rA r)
whether a given natural language molds the speaker's
thoughts due to its structure and limitations-the Whorf- =(x E A) (3)
Sapir hypothesis, or whether this is not valid-as Berlin
and Kay claim (see [19] for comments)will not be dealt where
with here. x=(xl.. xr) (4)

(b)Ambiguity of meaning is expressed by (subjectively)
weighting the possibility of interpretations. Thus, e.g. A=comb'(. , .)(AA 2  A r), (5)
the expression "I like her well." could be where comb' Is some other combination function and

Sl="I reAlly like her." C is the complement operator on generalized sets, cor-

S2= I wibh she remains well ( in good health), responding to "not" ,
2 X is the cartesian product operator corresponding to

53""I want her to become well." .&",
S l-"I like the well that she owns." + is the cartesian sum operator corresponding to "or",
4 etc. (Again, see [161 for further details.)

Weight w could be assigned to SI , i-l...4. Usually (f) Principle of Semantic Evaluation: Any sentence S
context Illows for resolution of these possible branches has a truth value I SI , a number in [0,1] which can
of meaning. For simplicity, it will be assumed here no be evaluated through the values of the semantic funct-
ambiguity is present. (See [19] for further discussion.) ion II over component parts of Sgivwn the particular

(c)Any given sentence in actuality represents an equi- semantic function, or equivalently , logic chosen [211.

valence class of possibly differently appearing-i.e., (I) If the semantic tunction is truth runctional,
syntactically different- sentences, all having the same then eq.(3) is evaluated as
semantic evaluation , a number lying in the unit interval
[0,1] representing its truth value . This is related to ( l)....tA (xr))
Cbomsky's concepts of transformational generative gram- r
mar, where changes in forms of sentences are due to CA(x) , (6)
word order rearranged, use of synonyms, change of voice where
from active to passive, or other superficialitiesrl7](r i ()

(d)Parsing Principle: Given any sentence (or any e- A ) = 1x1 A1; i'l,....

quivalence class of sentences) there exists an analytic yieldin in general the membership or possibility
form or parsing which Is semantically the same but Is function A [0,11, and where
structured within a formal language. This is related to fAi:X I
Chomsky's deep structure analysis [17].[18]. (For
further details on formal language and mul ivalued ON I not!I:[O,] - [0.1] is a nonincreasing ()
logic,see [211;27 16,)Attempts at establishing auto- function with 0N(0 )-l and #N(1 )=O, the classical truth
matic procedures or parsing natural language into a table relations.
corresponding formal language form are many and the

1;4



and similarly, In turn, assuming truth functionality here,

4 &8 - LI&:[O-1]-[0,l] * [0,1] (9) IIS(J)I =&($A(x) .... q*(x)) . (14)

is a nonderasing function usually assumed to be bound- However, for the choice * -mln, no change in semantic
ed above pointwise by the function mincontlnuous symm., value for the jth intensity Is reflecte6 here! On the
associative- so that it is unambiguously extendabie re- other hand if s is an archimedean t-norm such as prod
cursively to any finite number of arguments-and has the (i.e., ordinary product with respect to its arguments)
boundary truth table values o(h,y)=O,l y)=y , for then it follows from the canonial representation (seeall y in [0,I]. An analagous f rm holds for e.g. [161, Chapter 2)that there exists a rontinuous

00 = IorJI:[Ol]"[Ol] - [0,1] , (10) monotonedecreasing function h:[O,l I - P+ with t,(O)"S-

nondecreasing,etc., bounded below pointwise by max, and and h(l). such that (mn(h(x)+.-+h(x)h(O))) (15)
having boundary truth table values (0,y)=y,o(l,y)=l, frCxl..x )=h(i.nhnxarb.trhr positiI.
for all y in [0,1]. 0ne0 for all x in [0,i, l..,n, n arbitra e ositive.

The above functions are called negations (with often (Conversely, any choice of such an h generates an ar-

the added property of being an involution), t-norms, chiredean p& as in (15), where one need only take n-

and t-conorms, respectively. (See [16] for various 2.) It follows immediately that (15) implies that j in
properties of thzse operators.) eq.(14) may be replaced by any positive real number,

(ii) If H!- l is not truth functional, then the so that (14) becomes
evaluation in eq .6) does not hold and a more compli- I s(Jl I=h- (min(j.h(*A(x)).h(C))). (16)
cated evaluation procedure is valid. One example of Analagous forms may be obtained relative to ¢ ,and
this is Probability Logic, where e.g., n@)tion as well may be employed. In (16), whLn J.7,

1S or S2j = JS i + Isn-iS&S1, (11) S'jJ can be called an inter ifi-tion - hpr- somewhat
arbiLrarily, one denotes "very(S, a% S . very very

11not S1 I 1-lSI , (12) (S)" as "very(very(S))" = S(2 ,etc. When . , '_,)

but in general there Is no fixed o& , not dependent on similarly can be identified withllttle of (S) etc.

particular Sor such that Some tie-ins between hedges and quantifiers will be dis-
any pl o 2 cussed in subsection (e).

K;Sl & SIl I ( !S 111IlS 211), (c) Modal operators. (See [251 for background.)
where S ,S ,S are any sentences. (See [21] for further Alethic modality concerns itself with the spectrum-
discussion1 concerning ruth functional vs. non-truth together with negations- of indicativeness. Thus for
functional evaluations.) example:"impossible"improbble "possible"'is,"'likely',

In addition, for a given set of natural language con- "probable'"certain"is one such cnllection. Indeed, cor-
respondences hve been established between a simplenectors, more than one semantic evaluation function numerical scale of subjective confidences between 0 andmay be used throughout a given sentence or in certain 1 and such alethic forms for a number of applications

different sentences. (personal observations). Using negation, the operators

of necessity and entailment, among others, may be de-
SOME LAI!GUAGE OPErTORS AND RELATIONS fined [25]. Deontic modality concerns,analagously, the

In this section some common (but by no means exhaustive) spectrum of permission or obligation. Other modal farr-
language operators and relations are considered. ilies of operators may concern hope, desire, hate,etc.

Ca) Linguistic/logical connectors. In any case, a reasonable way to generate such families
The basic connectors representing negation (not), or spectra of modal operators is to choose some base

conjunction (&),disjunction(or),i:nplication(if()then()), or anchor within a given family, denoted as modal
have already been introduced. The last could also be de- say, and simply define 0
fined, as in the classical logic case, in terms of"not" modal = hedge(modalo) (17)
and"or". More compound operators such as "iff" may also where hedge is some suitably chosen modifier, as in
be defined. Purely linguistic connectors such as "al- subsection (e), depending of course on modal. Hence
though" and "but' can be defined entirely in terms of
the basic connectors also. For example, "although" may S = modal(x c A)
be identified with implication and 'but" with conjunct- = (x r modal(A))
ior, with some possible modifications.

(b) Hedges. = Cx hedge0modalo(A))) , (18)
Hedges are intensifiers or modifiers operating on with semantic evaluation, assuming truth functionality,

attributes. Ifpne lets eOrepresent generically any I = * CA(X))
hedge, such as extrenely',rery, little, quite, then modal
any choice of semantic evaluation function lII1 leads
to the function , [0,1] [0,1 . some hedge¢modalo(OA(x))

controversy exists concerning how to generate spectra (d) Temporal Operatora .(See [26] for the related
of hedges from a neutral hedge, where exponentiation area of temporal logics.)
and translatior, parameter families have been compared Consider first the case for past time operators and
empirically as candidates(22],[23],[24]. An alternative, in particular the expression
and perhaps more general,approarh is to consider first S=" y had property A" (20)
the simple hedges corresponding to integlral iterations
of conjunction. Thus, for any positive iikteger j, and Suppose that A is a Seneralized subset of domain X=
any sentence S=(xrA); x andA are as before : Y"R- , where Y is some fixed population (an ordirary

has property A to the intensity" set) and R-, the negative real& with zero,represents
o th ithe flow of time,with the present beina identified with

="x has property A(i) '  t=O. It is also supposed that 0A:X - [Cl] is known.

xcA)A&(A)A..A(xrA: factors) Thus for any t E R- , the sentence

(13) St "y had property A at time t" (21



has the semantic evaluation A (pop)=I (pop € AnB)I

I stll A(Y't) , (2e) ArB
for any y E Y. Next, identify "was" as a generalized 0 &Af Ewt

subset of R-, so that (over all
z cpop)

1wasl = :was R- - [0,] (23)

was RThe sentences
is some monotonically decreasing function with Cwas(--) S I= "individuals have A,given individuals have B"

=1 and *was fO)=O. At this point it should be remarked - (pop c A ! pop , B) (20)

that empirical investigation: have to be made to deter- and
mine what the actual membership functions involved in S = "If individuals have B they also have A"
this modeling-and all previously mentioned models-are 2
numerically. Putting together eqs.(2l)-(23) yields the = "If (pop c B) then (pop F A)"
reasonable interpretation for eq.(20) : ((pop,pop) C s ... ((pop r 8)*(popE 4)) (31)

S Or (St & (t c was)) , (241 are slight variations of eacn other. The first is an
over all example of conditioning, -ihere here conditioning is de-
t in R- ) fined as in [1, Theorem 4. Thus, the semantic e-

which under the usual truth functionality assumptions valuation S1 I satisfies the relation
yields ldS1l = ,o (0&(¢A(Y't),was (t))). (25) ¢AnB(Pop) = 11S1 & (pop c 8):!

(over all = 4,.CtS 1 H.08,(pop)). (32)

t in R- ) The second is evaluated,as before,as
Note also,that in practise, R- will be replaced by a 1(3
suitable discretization, unless 0 =max is chosen. (The i s2 1  W BP°P),4A(pop)) (33)

problem of extending t-norms and t-conorms to a contin- under the usial assumptions.
uum of arguments is discussed in [16]. A related result Then, a sentence such as "Most ships that have long
may also be found in [12], section 5.) Similar analysis hulls also have maneuvering problems" may be expressed
can be carried out for remote past, future, future an- in the general form
terior, and many other temporal relations.

(e) Conditioning and quantification. 3  = quant(S2 )
Zadeh's contibutions to this area have already been leading directly to the evaluations (under truth func-

mentioned [5]. See also the discussion of other ap- tionality assumptions)
proaches in [6], pp.1 38 -140. The approach presented -

here is quite general and reduces to Zadeh's and others 11S311 = 'quant(IISl )
for particular evaluations. Let A be a generalized and q ant 1
subset of base space X and B a generalized subset 4 1d1 = 

4 quant 2
of Y. Let quant stand for any quantification involving
percentages such as "some","all","few","many","some- where

times","often","most","about 3/4","o.456", etc. Let qa quantlI[0,l] - [011 (36)

pop be a fixed population of individuals (an ordinary is obtained beforehand. For example, t is convenient-
finite set) and suppose that measurement functions
f:pop - X and g:pop - Y are given so that for any z in ly modeled as a unimodal normalized function about 3/4,
pop, while tQ2 is a nondecreasing function, being zero over
and (ze A )='z has attribute A" "f(z) has attribute A"2

a zc B) "z has attribute B" "g(z) has attribute B". [0,1/2] and then becoming monotone increasing over

Furthermore, pop can be considered to be an element-Q6) [1/2,1], where Q1 
= "about 3/4" and Q2 = "rost".

the ordinary sense- of a superuniversal set Pop , the Zadeh's fuzzy cardinality approach to quantification is
collection of all populations of possible interest. In obtained by choosing 0 = prod, t (z)=l/card(pop),
turn, A and B may also be considered generalized subsets Wt

of Pop , so that for any member of Pop, such as pop, for all z in pop, and by choosing s0 = bndsum, (i.e.,

one can define in a reasonable way membership of pop for any vl,..vr in [0,1], bndsum(v1,..v ) min(l,
in A and in B as

(pop r A) = Or C (z c A) & ( zE wt)) 1"n
(nver all IIs311 = Cquant ( CI (f~z))t"Bg(z)))/'(al(g~z))))

and z Epop) q (all (all
(pop E B) = Or ( (z £ B) & (z E wt)), (27) z in pop) z in pop)

(over all (37)
z E pop)

where wt is some generalized subset of pop, representing Finally, it should be noted that ambiguity arises in

weighting of importance of each indiviGcal for either the modeling of exact quantifiers. For example,

attribute A or B ( assuming here for simplicity that wt "all" can be approached as above through the function
is the same for both attributes). If equally likely $all' 6,,] Kronecker delta function for 1) or it can
weighting is desired, 4.w, l/c-(pop)Jhus, under the usual bl podeled by the hedge corresponding to the operation
truth functionality assumptions, it follows that S for any sentence S . where here j card(pop),i.e.

oA(pop)=!l(pop c A)]i ! 0 (0&(0A(f(z))'ewt( z))) "all z's have A" = & ( A(f(z)))

(over all (28) (over all

z C pop) z in pop)
with a similar expression holding for o (pop), where f If "softening" is really intended as In"about 5/7" for
is replaced by g. Similarly, the evaluaqion of C (pop) 5/7" "almost all" for "all, "a fow" for "tOP 1'

oAnd etc., then the approach giver in this subsection is
isgen f furterdails ass most appropriate. Conversely, if an exact cardinality
(see [6] for further details) as: is specified as in "at least 2" and is meant literally,



then combinatoric considerations have to be made : *C(zl 2 )= (,poorWem(zlz 2 ) 
) . r el h Ssm(zl'z2))) (49)

"At least two z's in the population which have B • turb
have also A" noting that noar must be modeled and

Or ((z'EA) & (z"ck)I(z.B) & (z"cB)).(39) Orel h.(X = 0hedge,(normal(X)) , all xc[O,l] ,(50)
(over all hedge naturb
in pop, z' z") for some properly chosen hedge 1 ,etc.

(f) Verb and predicative relations. Define generlized set D, where for any z2 in POP 2
Three different approaches to the modeling of such 0(z)=0 ( 1z was ir z2 11 (51

relations ore presenteo here. DZ2) 0

(i) The relations may be definees operationally-i.e., (over all

only directly through a membership function. For example z3 in POP 3 )

the binary relatiun "runs to" as in "John runs to the where
store" can be deined over the domain XzYxZ, where Y is z3 was in z2 11= 00 (OA(Oz2 Rc(z3)'t)'Owas(t)))('S2)
some relevant human population and Z is a collection of (all t in R
possible objects of the verb "run to". Define generalized set E, for any z.,zi , pop 3

(ii) The relations may be defined indirectly through OE(zi.z;)=e wtd dist(loc(zi),loc(z 3"))) (53)
the use of measurement functions, as introduced earlier.
Thus "gross","fat","small", depending of course nhmatch-B
context, can be directly defined on the domain R'xR- where g arises from ,typically, hypotheses testing

after introducing the natural measurement functions Catch-N
f:pop - R , g:pop - R+ , representing height in inches of equality of means from gaussian data, and is thus
and weight in pounds, respectively. exponential in form (see [16], Chapter 9 for further

(iiI) The relations may be analyzed further, analog- details relating statistical procedures with this mo-

ous to a dictionary definition of a relatively compoune deling). 0z2Ic(z 3 ),t), typically may be obtained as

concept In terms of more primative ones. In turn, these 2
relations could be used to form constraints between the the probability function evaluation corresponding tocomonetswhich would be then~ modeled. The usefulness the output of a Kalman filter,for sensor syste1 A.
components, wihwlbeNext, define generalized set F, where for all z t Dop1 .

of this approach reains to be established. z2  pop2, E pop3 , e c [0,1) -representin

EXAMPLES ILLUSTRATING SOME OF THE PRIN IPLES possible correlation levels; and for all *K.:[O,l-.{O,I]
for j=1,2,3 ,

The above stated principles serve as guidelines in the

modeling of natural language information. In practice, F (ZlZ2,Ziz; Kl K 2. =

much ingenuity must be exercised (in a sense, this is
an art, based upon intuition) in properly capturing 0*( YO(zl'z2).0 (>2 (wem (Z1,z 2 ))))
the essence of the meaning of a given sentence. Such C 2 3 -

will continue to be the case until a universal parsing K "

procedure is discovered (see the comments earlier in ($$ &J K,(zO2)).K ( ..(zz.))).hed. ( . e...
e p u s541

the previous subsections)! Then define generalIzed set G, by for all z ,z "c po q,
Example 1. with z2 V, and for all oK ,J-1l2,3,and al? e.

Consider the compoundsentence S in the Introduction:

Let: pop, = set of all days of interest , (40) OG(Z3,z,e,¢KIOK2, K3

pop, = set of all ocean regions of interest(V,W,.. I , (41) O¢F (ZIV,z3z ,;O K2, K3) .$ (55)
pop3  set of all submarines of interest , (42) (a1 z l '"' 2 * 3

(42) in potl)

Irange of is.sble twperatures in degrees) 1
(range of possible wind velocities in m.p.h.) Define generalized set H by the conditioning procedure
(range of %'s possible representing cloudiness,etc.) where for all z z,,KJJ-l,2,3, witti z2 -W,

" (range of possible no. representing precip. inten.)
(range of average maximal visibility in miles) OH(z,z;,.O ,K2,¢K 0)mostpOPlc F(•Iz',z;,oKr4K

'R R+ [O,]R+=R representing weather measurements, 
1 2

Y=(range of wave-chop heights)x(range of max. water veij most (  t0 (O&(OF(Zl'W'3'3' ' OKiK. K 1)'wt(z
-R"R 4 , representing sea state conditions , (44) (all 3 (56)

with also domains V,Wo.,e(in latitude and longitude). in PO el i
Also define (errorless) measurement functions Finally, define generalized set L,corresponding to In-

wem:poPlpoP2  X ,weather measurement funct ference rule S*(elz',z') , indicating the functional
45 " dependencies, as, for all z3,z; C pop 3 , ar [0,1] ,

ssm:poplpop2  Y , sea state meas. function(4 5 )  L(,z 'Z") =n, 46) ''z

loc:pop3 - VUWtf-',geolocation meas. function (47) !s*(ezz3)1= *5 OG(,z',z "law "igh\,,iden 1 ,

In particular, for any zj popj , j=l 2, , e ffecteffect)

wem (7l ) = m (w (Zl z , ) ...wem5(Zl Z2 OH 4(Z3; (im- lo ON)) "
stt e z)rovef( effec i effec (57)

so that wernS(Z l 1z 2 ) is the av. max. visibility during with the required models assumed obtainable for the
day z1 in region z. (z2 =V or W). hedges "improve","low effect" ,"hiqh effect",etc.

Next. define generalized set C by, tor all z F pop , Example 2.

Consider the compound sentence S** ir the Introduction:

tet all notation be as in Example 1, where required:

] 7:,



Without loss of generality, fix time interval [a,b] com- mains to he done in the general area.
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